برآورد رواناب حوضه بار اریه با استفاده از مدل‌های WetSpa و شبکه عصبی مصنوعی

Authors

  • حسین رحمتی دانشجوی دکتری رشته‌ی مهندسی آبیاری و زهکشی، دانشگاه شهید چمران اهواز، دانشکده مهندسی علوم آب
  • صمد امامقلی زاده دانشیار رشته‌ی سازه‌های آبی، عضو هیئت علمی گروه آب و خاک دانشکده کشاورزی دانشگاه شاهرود
Abstract:

برآورد صحیح رواناب حوضه نقش بسیار مهمی در مدیریت آن دارد. تا به حال محققین زیادی از مدل‌های یکپارچه، توزیعی و هم‌چنین از روش‌های هوشمند مصنوعی به‌منظور برآورد رواناب حوضه استفاده نمودند. در تحقیق حاضر برای برآورد آبدهی حوضه بار اریه با مساحتی معادل با 112 کیلومتر مربع و متوسط بارش سالانه 72/306 میلی‌متر از دو مدل توزیعی WetSpa و مدل هوشمند شبکه عصبی مصنوعی ANN استفاده گردید. به‌منظور اجرای مدل WetSpa از دو دسته اطلاعات شامل نقشه‌های رستری و اطلاعات هواشناسی و برای مدل شبکه عصبی مصنوعی تنها از اطلاعات هواشناسی استفاده گردید. اجرای مدل‌های مذکور در دوره‌ی 5 ساله صورت پذیرفت. به‌منظور مقایسه نتایج مدل‌ها، از معیارهای ارزیابی ضریب همبستگی R2، مجذور میانگین خطای استاندارد RMSE و میانگین قدر مطلق خطا MAE استفاده شد. نتایج بدست آمده نشان داد مدل WetSpa با R2و RMSE برابر با  m3/s920/0 وm3/s  346/0 و هم‌چنین مدل شبکه عصبی مصنوعی با   R2و RMSE برابر با m3/s 959/0 و m3/s 310/0 توانایی شبیه‌سازی جریان رودخانه بار اریه را دارند. هم‌چنین استفاده از مدل شبکه عصبی مصنوعی موجب کاهش خطای برآورد رواناب حوضه به مقدار 6/11 درصد در مقایسه با مدل WetSpa شده است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ارزیابی مدل WetSpa در شبیه‌سازی بارش – رواناب حوضه‌های نیمه‌خشک و کوهستانی (مطالعه موردی: حوضه بار اریه)

مطالعات انجام گرفته در زمینه شبیه‌سازی بارش - رواناب نشان می‌دهد بیشتر  تحقیقات در مناطق مرطوب انجام شده است. این در حالی است که در مناطق خشک و نیمه‌خشک مطالعات کم‌تری صورت گرفته است. به همین منظور، در این پژوهش از مدل توزیعی مکانی WetSpaبا قابلیت اتصال به سیستم اطلاعات جغرافیایی برای شبیه‌سازی فرآیند بارش - رواناب حوضه بار اریه واقع در منطقه‌ای نیمه‌خشک و مساحتی معادل 112 کیلومتر مربع و متوسط ...

full text

شبیه سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی(مورد: حوضه آبخیز فریدن)

سیل، یکی از پدیده‌های ویرانگر طبیعی است که پیش‌بینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(MLP)، قانون یادگیری پس‌انتشار خطا(BP)، الگوریتم لونبرگ- مارکوارت(LM) و معیارهای RMSE و R2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...

full text

بررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دسته‌بندی‌شده

بار رسوب جریان، شاخص مفیدی در پیش‌بینی فرسایش خاک در حوزه‌های آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب می‌تواند در مدیریت و اجرای پروژه‌های آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دسته‌بندی داده‌ها به‌عنوان راه‌کاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانه‌های خلیفه‌ترخان و چهل‌گزی در حوضۀ قشلاق...

full text

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

شبیه سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی(مورد: حوضه آبخیز فریدن)

سیل، یکی از پدیده های ویرانگر طبیعی است که پیش بینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(mlp)، قانون یادگیری پس انتشار خطا(bp)، الگوریتم لونبرگ- مارکوارت(lm) و معیارهای rmse و r2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...

full text

تخمین ضریب رواناب رگبار با استفاده از سیستم استنباط فازی- عصبی تطبیقی (ANFIS) در حوزه آبخیز بار اریه نیشابور

The rainfall-runoff process and flooding are hydrological phenomena that are difficult to study due to the influence of different parameters. So far, different methods and models have been provided to analyze these phenomena. The purpose of this study is evaluation of adaptive neuro-fuzzy inference system (ANFIS) for storm runoff coefficient forecasting. To that end, Barariyeh watershed was cho...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 21  issue 62

pages  95- 115

publication date 2018-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023